
ZS Documentation
Release 0.10.0

Nathaniel J. Smith

Sep 27, 2017

Contents

1 Project logistics 3

2 The command-line zs tool 5
2.1 zs make . 6
2.2 zs info . 8
2.3 zs dump . 9
2.4 zs validate . 11

3 The zs library for Python 13
3.1 Quickstart . 13
3.2 Error reporting . 14
3.3 Reading . 14
3.4 Writing . 17

4 Conventions 19
4.1 Metadata . 19
4.2 Record format . 20

5 Publically available ZS datasets 23

6 On-disk layout of ZS files 25
6.1 Overview . 25
6.2 General notes . 26
6.3 Layout details . 27
6.4 Key invariants . 30
6.5 Specification history . 30

7 Release history 31
7.1 v0.10.0 . 31
7.2 v0.9.0 . 31

8 Indices and tables 33

Python Module Index 35

i

ii

ZS Documentation, Release 0.10.0

ZS is a simple, read-only, binary file format designed for distributing, querying, and archiving arbitarily large data
sets (up to tens of terabytes and beyond) – so long as those data sets can be represented as a set of arbitrary binary
records. Of course it works on small data sets too. You can think of it as an alternative to storing data in tab- or
comma-separated files – each line in such a file becomes a record in a ZS file. But ZS has a number of advantages
over these traditional formats:

• ZS files are small: ZS files (optionally) store data in compressed form. The 3-gram counts from the 2012 US
English release of the Google N-grams are distributed as a set of gzipped text files in tab-separated format, and
take 1.3 terabytes of space. Uncompressed, this data set comes to more than 10 terabytes (and would be even
more if loaded into a database). The same data in a ZS file with the default settings (LZMA compression) takes
just 0.75 terabytes – this is more than 41% smaller than the current distribution format, and 13.5x smaller than
the raw data.

• Nonetheless, ZS files are fast: Decompression is an inherently slow and serial operation, which means that
reading compressed files can easily become the bottleneck in an analysis. Google distributes the 3-gram counts
in many separate .gz files; one of these, for example, contains just the n-grams that begin with the letters “th”.
Using a single core on a handy compute server, we find that we can get decompressed data out of this .gz file
at ~190 MB/s. At this rate, reading this one file takes more than 47 minutes – and that’s before we even begin
analyzing the data inside it.

The LZMA compression used in our ZS file is, on its own, slower than gzip. If we restrict ourselves to a single
core, then we can only read our ZS file at ~50 MB/s. However, ZS files allow for multithreaded decompression.
Using 8 cores, gunzip runs at... still ~190 MB/s, because gzip decompression cannot be parallelized. On those
same 8 cores, our ZS file decompresses at ~390 MB/s – a nearly linear speedup. This is also ~3x faster than our
test server can read an uncompressed file from disk.

• In fact, ZS files are really, REALLY fast: Suppose we want to know how many different Google-scanned books
published in the USA in 1955 used the phrase “this is fun”. ZS files have a limited indexing ability that lets you
quickly locate any arbitrary span of records that fall within a given sorted range, or share a certain textual prefix.
This isn’t as nice as a full-fledged database system that can query on any column, but it can be extremely useful
for data sets where the first column (or first several columns) are usually used for lookup. Using our example
file, finding the “this is fun” entry takes 5 disk seeks and ~25 milliseconds of CPU time – something like 85 ms
all told. (And hot cache performance – e.g., when performing repeated queries in the same file – is even better.)
The answer, by the way, is 27 books:

$ zs dump --prefix='this is fun\t1955\t' google-books-eng-us-all-20120701-3gram.zs
this is fun 1955 27 27

When this data is stored as gzipped text, then only way to locate an individual record, or span of similar records,
is start decompressing the file from the beginning and wait until the records we want happen to scroll by, which
in this case – as noted above – could take more than 45 minutes. Using ZS makes this query ~33,000x faster.

• ZS files contain rich metadata: In addition to the raw data records, every ZS file contains a set of structured
metadata in the form of an arbitrary JSON document. You can use this to store information about this file’s
record format (e.g., column names), notes on data collection or preprocessing steps, recommended citation
information, or whatever you like, and be confident that it will follow your data where-ever it goes.

• ZS files are network friendly: Suppose you know you just want to look up a few individual records that are
buried inside that 0.75 terabyte file, or want a large span of records that are still much smaller than the full file
(e.g., all 3-grams that begin “this is”). With ZS, you don’t have to actually download the full 0.75 terabytes of
data. Given a URL to the file, the ZS tools can find and fetch just the parts of the file you need, using nothing
but standard HTTP. Of course going back and forth to the server does add overhead; if you need to make a large
number of queries then it might be faster (and kinder to whoever’s hosting the file!) to just download it. But
there’s no point in throwing around gigabytes of data to answer a kilobyte question.

If you have the ZS tools installed, you can try it right now. Here’s a real trace of a computer in Dallas searching
the 3-gram database stored at UC San Diego. Note that the computer in San Diego has no special software
installed at all – this is just a static file that’s available for download over HTTP:

Contents 1

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://json.org

ZS Documentation, Release 0.10.0

$ time zs dump --prefix='this is fun\t' http://bolete.ucsd.edu/njsmith/google-
→˓books-eng-us-all-20120701-3gram.zs
this is fun 1729 1 1
this is fun 1848 1 1
...
this is fun 2008 435 420
this is fun 2009 365 352

Real time elapsed: 1.425 seconds

• ZS files are ever-vigilant: Computer hardware is simply not reliable, especially on scales of years and terabytes.
I’ve dealt with RAID cards that would occasionally flip a single bit in the data that was being read from disk.
How confident are you that this won’t be a key bit that totally changes your results? Standard text files provide
no mechanism for detecting data corruption. Gzip and other traditional compression formats provide some
protection, but it’s only guaranteed to work if you read the entire file from start to finish and then remember to
check the error code at the end, every time. But ZS is different: it protects every bit of data with 64-bit CRC
checksums, and the software we distribute will never show you any data that hasn’t first been double-checked
for correctness. (Fortunately, the cost of this checking is negligible; all the times quoted above include these
checks). If it matters to you whether your analysis gets the right answer, then ZS is a good choice.

• Relying on the ZS format creates minimal risk: The ZS file format is simple and fully documented; an average
programmer with access to standard libraries could write a working decompressor in a few hours. The reference
implementation is BSD-licensed, undergoes exhaustive automated testing (>98% coverage) after every checkin,
and just in case there are any ambiguities in the English spec, we also have a complete file format validator,
so you can confirm that your files match the spec and be confident that they will be readable by any compliant
implementation.

• ZS files have a name composed entirely of sibilants: How many file formats can say that?

This manual documents the reference implementation of the ZS file format, which includes both a command-line zs
tool for manipulating ZS files and a fast and featureful Python API, and also provides a complete specification of the
ZS file format in enough detail to allow independent implementations.

Contents:

2 Contents

CHAPTER 1

Project logistics

Documentation: http://zs.readthedocs.org/

Installation: You need either Python 2.7, or else Python 3.3 or greater.

Because zs includes a C extension, you’ll also need a C compiler and Python headers. On Ubuntu or Debian,
for example, you get these with:

sudo apt-get install build-essential python-dev

Once you have the ability to build C extensions, then on Python 3 you should be able to just run:

pip install zs

On Python 2.7, things are slightly more complicated: here, zs requires the backports.lzma package, which
in turn requires the liblzma library. On Ubuntu or Debian, for example, something like this should work:

sudo apt-get install liblzma-dev
pip install backports.lzma
pip install zs

zs also requires the following packages: six, docopt, requests. However, these are all pure-Python
packages which pip will install for you automatically when you run pip install zs.

Downloads: http://pypi.python.org/pypi/zs/

Code and bug tracker: https://github.com/njsmith/zs

Contact: Nathaniel J. Smith <nathaniel.smith@ed.ac.uk>

Developer dependencies (only needed for hacking on source):

• Cython: needed to build from checkout

• nose: needed to run tests

• nose-cov: because we use multiprocessing, we need this package to get useful test coverage information

• nginx: needed to run HTTP tests

3

http://zs.readthedocs.org/
http://pypi.python.org/pypi/zs/
https://github.com/njsmith/zs
mailto:nathaniel.smith@ed.ac.uk

ZS Documentation, Release 0.10.0

License: 2-clause BSD, see LICENSE.txt for details.

4 Chapter 1. Project logistics

CHAPTER 2

The command-line zs tool

The zs tool can be used from the command-line to create, view, and check ZS files.

The main zs command on its own isn’t very useful. It can tell you what version you have – these docs were built with:

$ zs --version
0.10.0

And it can tell you what subcommands are available:

$ zs --help
ZS: a space-efficient file format format for distributing, archiving,
and querying large data sets.

Usage:
zs <subcommand> [<args>...]
zs --version
zs --help

Available subcommands:
zs dump Get contents of a .zs file.
zs info Get general metadata about a .zs file.
zs validate Check a .zs file for validity.
zs make Create a new .zs file with specified contents.

For details, use 'zs <subcommand> --help'.

These subcommands are documented further below.

Note: In case you have the Python zs package installed, but somehow do not have the zs executable available on
your path, then it can also be invoked as python -m zs. E.g., these two commands do the same thing:

$ zs dump myfile.zs
$ python -m zs dump myfile.zs

5

ZS Documentation, Release 0.10.0

zs make

zs make allows you to create ZS files. In its simplest form, it just reads in a text file, and writes out a ZS file, treating
each line as a separate record.

For example, if we have this data file (a tiny excerpt from the Web 1T dataset released by Google; note that the last
whitespace in each line is a tab character):

$ cat tiny-4grams.txt
not done explicitly . 42
not done extensive research 225
not done extensive testing 749
not done extensive tests 87
not done extremely well 41
not done fairly . 61
not done fast , 52
not done fast enough 71

Then we can compress it into a ZS file by running:

$ zs make '{"corpus": "doc-example"}' tiny-4grams.txt tiny-4grams.zs --codec deflate
zs: Opening new ZS file: tiny-4grams.zs
zs: Reading input file: tiny-4grams.txt
zs: Blocks written: 1
zs: Blocks written: 2
zs: Updating header...
zs: Done.

The first argument specifies some arbitrary metadata that will be saved into the ZS file, in the form of a JSON string;
the second argument names the file we want to convert; and the third argument names the file we want to create.

The --codec argument lets us choose which compression method we use; usually you should stick with the default
(which is lzma), but until readthedocs.org responds to our bug report we can’t use lzma here in the docs. Sorry.

Note: You must ensure that your file is sorted before running zs make. (If you don’t, then it will error out and scold
you.) GNU sort is very useful for this task – but don’t forget to set LC_ALL=C in your environment before calling
sort, to make sure that it uses ASCIIbetical ordering instead of something locale-specific.

When your file is too large to fit into RAM, GNU sort will spill the data onto disk in temporary files. When your file
is too large to fit onto disk, then a useful incantation is:

gunzip -c myfile.gz | env LC_ALL=C sort --compress-program=lzop \
| zs make "{...}" - myfile.zs

The --compress-program option tells sort to automatically compress and decompress the temporary files using
the lzop utility, so that you never end up with uncompressed data on disk. (gzip also works, but will be slower.)

Many other options are also available:

$ zs make --help
Create a new .zs file.

Usage:
zs make <metadata> <input_file> <new_zs_file>
zs make [--terminator TERMINATOR | --length-prefixed=TYPE]

[-j PARALLELISM]
[--no-spinner]

6 Chapter 2. The command-line zs tool

http://catalog.ldc.upenn.edu/LDC2006T13
http://json.org

ZS Documentation, Release 0.10.0

[--branching-factor=FACTOR]
[--approx-block-size=SIZE]
[--codec=CODEC] [-z COMPRESS-LEVEL]
[--no-default-metadata]
[--]
<metadata> <input_file> <new_zs_file>

zs make --help

Arguments:

<metadata> Arbitrary JSON-encoded metadata that will be stored in your
new ZS file. This must be a JSON "object", i.e., the
outermost characters have to be {}. If you're just messing
about, then you can just use "{}" here and be done, but for
any file that will live for long then we strongly recommend
adding more details about what this file is. See the
"Metadata conventions" section of the ZS manual for more
information.

<input_file> A file containing the records to be packed into the
new .zs file. Use "-" for stdin. Records must already be
sorted in ASCIIbetical order. You may want to do something
like:
cat myfile.txt | env LC_ALL=C sort | zs make - myfile.zs

<new_zs_file> The file to create. Conventionally uses the file extension
".zs".

Input file options:
--terminator=TERMINATOR Treat the input file as containing a series of

records separated by TERMINATOR. Standard Python
string escapes are supported (e.g., "\x00" for
NUL-terminated records). The default is
appropriate for standard Unix/OS X text files. If
your have a text file with Windows-style line
endings, then you'll want to use "\r\n"
instead. [default: \n]

--length-prefixed=TYPE Treat the input file as containing a series of
records containing arbitrary binary data, each
prefixed by its length in bytes, with this length
encoded according to TYPE. (Valid options:
uleb128, u64le.)

Processing options:
-j PARALLELISM The number of CPUs to use for compression.

[default: guess]
--no-spinner Disable the progress meter.

Output file options:
--branching-factor=FACTOR Number of keys in each *index* block.

[default: 1024]
--approx-block-size=SIZE Approximate *uncompressed* size of the records in

each *data* block, in bytes. [default: 393216]
--codec=CODEC Compression algorithm. (Valid options: none,

deflate, lzma.) [default: lzma]
-z COMPRESS-LEVEL, --compress-level=COMPRESS-LEVEL

Degree of compression to use. Interpretation
depends on the codec in use:

2.1. zs make 7

ZS Documentation, Release 0.10.0

deflate: An integer between 1 and 9.
(Default: 6)

lzma: One of the strings 0, 0e, 1, or 1e.
The number (0 versus 1) indicates the history
size used in the compression -- there's no
point in using 1 or 1e unless you also
increase --approx-block-size. The presence of
the "e" turns on "extreme" mode, which is
several times slower, but may produce
substantially smaller files. (Default: 0e)

--no-default-metadata By default, 'zs make' adds an extra "build-info"
key to the metadata, recording the time, host,
user who created the file, and zs library
version. This option disables this behaviour.

zs info

zs info displays some general information about a ZS file. For example:

$ zs info tiny-4grams.zs
{

"root_index_offset": 380,
"root_index_length": 41,
"total_file_length": 421,
"codec": "deflate",
"data_sha256": "403b706aa1f8f5d1d2ffd2765507239bd5a5025bde3f89df8035f8a5b9348b11",
"metadata": {

"build-info": {
"time": "2014-04-29T12:41:59.660529Z",
"version": "zs 0.9.0",
"user": "njs",
"host": "branna.vorpus.org"

},
"corpus": "doc-example"

},
"statistics": {

"root_index_level": 1
}

}

The most interesting part of this output might be the "metadata" field, which contains arbitrary metadata describing
the file. Here we see that our custom key was indeed added, and that zs make also added some default metadata. (If
we wanted to suppress this we could have used the --no-default-metadata option.) The "data_sha256"
field is, as you might expect, a SHA-256 hash of the data contained in this file – two ZS files will have the same
value here if and only if they contain exactly the same logical records, regardless of compression and other details of
physical file layout. The "codec" field tells us which kind of compression was used. The other fields have to do
with more obscure technical aspects of the ZS file format; see the documentation for the ZS class and the file format
specification for details.

zs info is fast, even on arbitrarily large files, because it looks at only the header and the root index; it doesn’t have
to uncompress the actual data. If you find a large ZS file on the web and want to see its metadata before downloading
it, you can pass an HTTP URL to zs info directly on the command line, and it will download only as much of the
file as it needs to.

zs info doesn’t take many options:

8 Chapter 2. The command-line zs tool

https://en.wikipedia.org/wiki/SHA-256

ZS Documentation, Release 0.10.0

$ zs info --help
Display general information from a .zs file's header.

Usage:
zs info [--metadata-only] [--] <zs_file>
zs info --help

Arguments:
<zs_file> Path or URL pointing to a .zs file. An argument beginning with

the four characters "http" will be treated as a URL.

Options:
-m, --metadata-only Output only the file's metadata, not any general

information about it.

Output will be valid JSON.

zs dump

So zs info tells us about the contents of a ZS file, but how do we get our data back out? That’s the job of zs
dump. In the simplest case, it simply dumps the whole file to standard output, with one record per line – the inverse
of zs make. For example, this lets us “uncompress” our ZS file to recover the original file:

$ zs dump tiny-4grams.zs
not done explicitly . 42
not done extensive research 225
not done extensive testing 749
not done extensive tests 87
not done extremely well 41
not done fairly . 61
not done fast , 52
not done fast enough 71

But we can also extract just a subset of the data. For example, we can pull out a single line (notice the use of \t to
specify a tab character – Python-style backslash character sequences are fully supported):

$ zs dump tiny-4grams.zs --prefix="not done extensive testing\t"
not done extensive testing 749

Or a set of related ngrams:

$ zs dump tiny-4grams.zs --prefix="not done extensive "
not done extensive research 225
not done extensive testing 749
not done extensive tests 87

Or any arbitrary range:

$ zs dump tiny-4grams.zs --start="not done ext" --stop="not done fast"
not done extensive research 225
not done extensive testing 749
not done extensive tests 87
not done extremely well 41
not done fairly . 61

2.3. zs dump 9

ZS Documentation, Release 0.10.0

Just like zs info, zs dump is fast – it reads only the data it needs to to satisfy your query. (Of course, if you
request the whole file, then it will read the whole file – but it does this in an optimized way; see the -j option if you
want to tune how many CPUs it uses for decompression.) And just like zs info, zs dump can directly take an
HTTP URL on the command line, and will download only as much data as it has to.

We also have several options to let us control the output format. ZS files allow records to contain arbitrary data, which
means that it’s possible to have a record that contains a newline embedded in it. So we might prefer to use some other
character to mark the ends of records, like NUL:

$ zs dump tiny-4grams.zs --terminator="\x00"

...but putting the output from that into these docs would be hard to read. Instead we’ll demonstrate with something
sillier:

$ zs dump tiny-4grams.zs --terminator="XYZZY" --prefix="not done extensive "
not done extensive research 225XYZZYnot done extensive
→˓testing 749XYZZYnot done extensive tests 87XYZZY

Of course, this will still have a problem if any of our records contained the string “XYZZY” – in fact, our records could
in theory contain anything we might choose to use as a terminator, so if we have an arbitrary ZS file whose contents
we know nothing about, then none of the options we’ve seen so far is guaranteed to work. The safest approach is to
instead use a format in which each record is explicitly prefixed by its length. zs dump can produce length-prefixed
output with lengths encoded in either u64le or uleb128 format (see Integer representations for details about what these
are).

$ zs dump tiny-4grams.zs --prefix="not done extensive " --length-prefixed=u64le | hd
/bin/sh: 1: hd: not found
Exception ignored in: <_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>
BrokenPipeError: [Errno 32] Broken pipe

Obviously this is mostly intended for when you want to read the data into another program. For example, if you had
a ZS file that was compressed using the lzma codec and you wanted to convert it to the deflate codec, the easiest and
safest way to do that is with a command like:

$ zs dump --length-prefixed=uleb128 myfile-lzma.zs | \
zs make --length-prefixed=uleb128 --codec=deflate \

"$(zs info -m myfile-lzma.zs)" - myfile-deflate.zs

If you’re using Python, of course, the most convenient way to read a ZS file into your program is not to use zs dump
at all, but to use the zs library API directly.

Full options:

$ zs dump --help
Unpack some or all of the contents of a .zs file.

Usage:
zs dump <zs_file>
zs dump [--start=START] [--stop=STOP] [--prefix=PREFIX]

[--terminator=TERMINATOR | --length-prefixed=TYPE]
[-j PARALLELISM]
[-o FILE]
[--] <zs_file>

zs dump --help

Arguments:
<zs_file> Path or URL pointing to a .zs file. An argument beginning with

the four characters "http" will be treated as a URL.

10 Chapter 2. The command-line zs tool

https://en.wikipedia.org/wiki/Null_character

ZS Documentation, Release 0.10.0

Selection options:
--start=START Output only records which are >= START.
--stop=STOP Do not output any records which are >= STOP.
--prefix=PREFIX Output only records which begin with PREFIX.

Python string escapes (e.g., "\n", "\x00") are allowed. All comparisons
are performed using ASCIIbetical ordering.

Processing options:
-j PARALLELISM The number of CPUs to use for decompression. Note

that if you know that you are only reading a small
number of records, then -j0 may be the fastest
option, since it reduces startup overhead.
[default: guess]

Output options:
-o FILE, --output=FILE Output to the given file, or "-" for stdout.

[default: -]

Record framing options:
--terminator=TERMINATOR String used to terminate records in output. Python

string escapes are allowed (e.g., "\n", "\x00").
[default: \n]

--length-prefixed=TYPE Instead of terminating records with a marker,
prefix each record with its length, encoded as
TYPE. (Options: uleb128, u64le)

ZS files are organized as a collection of records, which may contain
arbitrary data. By default, these are output as individual lines. However,
this may not be a great idea if you have records which themselves contain
newline characters. As an alternative, you can request that they instead be
terminated by some arbitrary string, or else request that each record be
prefixed by its length, encoded in either unsigned little-endian base-128
(uleb128) format or unsigned little-endian 64-bit (u64le) format.

Warning: Due to limitations in the multiprocessing module in Python 2, zs dump can be poorly behaved if you
hit control-C (e.g., refusing to exit).

On a Unix-like platform, if you have a zs dump that is ignoring control-C, then try hitting control-Z and then
running kill %zs.

The easy workaround to this problem is to use Python 3 to run zs. The not so easy workaround is to implement a
custom process pool manager for Python 2 – patches accepted!

zs validate

This command can be used to fully validate a ZS file for self-consistency and compliance with the specification (see
On-disk layout of ZS files); this makes it rather useful to anyone trying to write new software to generate ZS files.

It is also useful because it verifies the SHA-256 checksum and all of the per-block checksums, providing extremely
strong protection against errors caused by disk failures, cosmic rays, and other such annoyances. However, this is not
usually necessary, since the zs commands and the zs library interface never return any data unless it passes a 64-bit
checksum. With ZS you can be sure that your results have not been corrupted by hardware errors, even if you never

2.4. zs validate 11

ZS Documentation, Release 0.10.0

run zs validate at all.

Full options:

$ zs validate --help
Check a .zs file for errors or data corruption.

Usage:
zs validate [-j PARALLELISM] [--] <zs_file>

Arguments:
<zs_file> Path or URL pointing to a .zs file. An argument beginning with

the four characters "http" will be treated as a URL.

Options:
-j PARALLELISM The number of CPUs to use for decompression.

[default: guess]

12 Chapter 2. The command-line zs tool

CHAPTER 3

The zs library for Python

Quickstart

Using the example file we created when demonstrating zs make, we can write:

In [1]: from zs import ZS

In [2]: z = ZS("example/tiny-4grams.zs")

In [3]: for record in z:
...: print(record.decode("utf-8"))
...:

not done explicitly . 42
not done extensive research 225
not done extensive testing 749
not done extensive tests 87
not done extremely well 41
not done fairly . 61
not done fast , 52
not done fast enough 71

Notice that on Python 3.x, we search using byte strings, and we get
byte strings back.
(On Python 2.x, byte strings are the same as regular strings.)
In [4]: for record in z.search(prefix=b"not done extensive testing\t"):

...: print(record.decode("utf-8"))

...:
\\\not
→˓done extensive testing 749

In [5]: for record in z.search(prefix=b"not done extensive "):
...: print(record.decode("utf-8"))
...:

\\not
→˓done extensive research 225

13

ZS Documentation, Release 0.10.0

not done extensive testing 749
not done extensive tests 87

In [6]: for record in z.search(start=b"not done ext", stop=b"not done fast"):
...: print(record.decode("utf-8"))
...:

\\\not
→˓done extensive research 225
not done extensive testing 749
not done extensive tests 87
not done extremely well 41
not done fairly . 61

Error reporting

zs defines two exception types.

exception zs.ZSError
Exception class used for most errors encountered in the ZS package. (Though we do sometimes raise exceptions
of the standard Python types like IOError, ValueError, etc.)

exception zs.ZSCorrupt
A subclass of ZSError, used specifically for errors that indicate a malformed or corrupted ZS file.

Reading

Reading ZS files is accomplished by instantiating an object of type ZS:

class zs.ZS(path=None, url=None, parallelism=’guess’, index_block_cache=32)
Object representing a .zs file opened for reading.

Parameters

• path – A string containing an on-disk file to be opened. Exactly one of path or url must
be specified.

• url – An HTTP (or HTTPS) URL pointing to a .zs file, which will be accessed directly
from the server. The server must support Range: queries. Exactly one of path or url
must be specified.

• parallelism – When querying a ZS file, there are always at least 2 threads working in
parallel: the main thread, where you iterate over the results and presumably do something
with them, and a second thread used for IO. In addition, we can spawn any number of worker
processes which will be used internally for decompression and other CPU-intensive tasks.
parallelism=1 means to spawn 1 worker process; if you want to perform decompres-
sion and other such tasks in serial in your main thread, then use parallelism=0. The
default of parallelism="guess" means to spawn one worker process per available
CPU.

Note that if you know that you are going to read just a few records on each search, then par-
allelism=0 may be slightly faster; this saves the overhead of setting up the worker processes,
and they only really help when doing large bulk reads.

• index_block_cache – The number of index blocks to keep cached in memory. This
speeds up repeated queries. Larger values provide better caching, but take more memory.

14 Chapter 3. The zs library for Python

ZS Documentation, Release 0.10.0

Make sure that this is at least as large as your file’s root_index_level, or else the
cache will be useless.

This object can be used as a context manager, e.g.:

with ZS("./my/favorite.zs") as zs_obj:
...

is equivalent to:

zs_obj = ZS("./my/favorite.zs")
try:

...
finally:

zs_obj.close()

Basic searches

class zs.ZS

search(start=None, stop=None, prefix=None)
Iterate over all records matching the given query.

A record is considered to “match” if:

•start <= record, and

•record < stop, and

•record.startswith(prefix)

Any or all of the arguments can be left as None, in which case the corresponding check or checks are not
performed.

Note the asymmetry between start and stop – this is analogous to other Python constructs which use
half-open [start, stop) ranges, like range().

If no arguments are given, iterates over the entire contents of the .zs file.

Records are always returned in sorted order.

__iter__()
Equivalent to zs_obj.search().

File attributes and metadata

ZS objects provides a number of read-only attributes that give general information about the ZS file:

class zs.ZS

metadata
A .zs file can contain arbitrary metadata in the form of a JSON-encoded dictionary. This attribute contains
this metadata in unpacked form.

root_index_offset
The file offset of the root index block, as stored in the header.

3.3. Reading 15

https://docs.python.org/2/library/functions.html#range

ZS Documentation, Release 0.10.0

root_index_length
The length of the root index block, as stored in the header.

total_file_length
The proper length of this file, as stored in the header.

codec
The compression codec used on this file, as a byte string.

data_sha256
A strong hash of the underlying data records contained in this file. If two files have the same value here,
then they are guaranteed to represent exactly the same data (i.e., return the same records to the same
queries), though they might be stored using different compression algorithms, have different metadata, etc.

root_index_level
The level of the root index.

Starting from scratch, finding an arbitrary record in a ZS file requires that we fetch the header, fetch the root
block, and then fetch this many blocks to traverse the index tree. So that’s a total of root_index_level
+ 2 fetches. (On local disk, each “fetch” is a disk seek; over HTTP, each “fetch” is a round-trip to the
server.) For later queries on the same ZS object, at least the header and root will be cached, and (if you’re
lucky) other blocks may be as well.

Fast bulk operations

If you want to perform some computation on many records (e.g., all the records in your file), then these functions are
the most efficient way to do that.

class zs.ZS

block_map(fn, start=None, stop=None, prefix=None, args=(), kwargs={})
Apply a given function – in parallel – to records matching a given query. This function is lazy – if you
don’t iterate over the results, then the function might not be called on all of them.

Using this method (or its friend, block_exec()) is the best way to perform large bulk operations on ZS
files.

The way to think about how it works is, first we find all records matching the given query:

matches = zs_obj.search(start=start, stop=stop, prefix=prefix)

and then we divide the resulting list of records up into arbitrarily sized chunks, and for each chunk we call
the given function, and yield the result:

while there are matches:
chunk = list(get arbitrarily many matches)
yield fn(chunk, *args, **kwargs)

But, there is a trick: in fact many copies of the function are run in parallel in different worker processes,
and then the results are passed back to the main process for you to do whatever you want with. (Think
“poor-man’s map-reduce”.)

This means that your fn, args, kwargs, and return values must all be pickleable. In particular, fn
probably has to either be a global function in a named module, or else an object with a __call__ method
that is an instance of a globally defined class in a named module. (Sorry, I didn’t make the rules. Feel free
to submit patches to use a more featureful serialization library like ‘dill’, esp. if you can demonstrate that
they don’t add too much overhead.)

16 Chapter 3. The zs library for Python

ZS Documentation, Release 0.10.0

This will be most efficient if fn performs non-trivial work, and especially if it can avoid returning
large/complicated structures from fn – after all, the whole idea is that the code that’s looping over the
results from block_map() should have less work to do than it would if it were just calling search()
directly.

If you manage to take this to the extreme where you have nothing to return from block_map() (maybe
your fn is writing to a database or something), then you can use block_exec() instead to save a bit of
boilerplate.

If you pass parallelism=0 when creating your ZS object, then this method will perform all work
within the main process. This makes debugging a lot easier, because it will let you get real backtraces if
(when) your fn crashes.

block_exec(fn, start=None, stop=None, prefix=None, args=(), kwargs={})
Eager version of block_map().

This is equivalent to calling block_map(), iterating over the results, and throwing them all away.

High-level operations

class zs.ZS

dump(out_file, start=None, stop=None, prefix=None, terminator=b’\n’, length_prefixed=None)
Decompress a given range of the .zs file to another file. This is performed in the most efficient available
way.

Parameters

• terminator (byte string) – A terminator appended to the end of each record.
Default is a newline. (Ignored if length_prefixed is given.)

• length_prefixed – If given, records are output in a length-prefixed format, and
terminator is ignored. Valid values are the strings "uleb128" or "u64le", or
None.

See search() for the definition of start, stop, and prefix.

On Python 3, out_file must be opened in binary mode.

For a convenient command-line interface to this method, see zs dump.

validate()
Validate this .zs file for correctness.

This method does an exhaustive check of the current file, to validate it for self-consistency and compliance
with the ZS specification. It should catch all cases of disk corruption (with high probability), and all cases
of incorrectly constructed files.

This reads and decompresses the entire file, so may take some time.

For a convenient command-line interface to this method, see zs validate.

Writing

In case you want a little more control over ZS file writing than you can get with the zs make command-line utility
(see zs make), you can also access the underlying ZS-writing code directly from Python by instantiating a ZSWriter
object.

3.4. Writing 17

ZS Documentation, Release 0.10.0

class zs.ZSWriter(path, metadata, branching_factor, parallelism=’guess’, codec=’lzma’,
codec_kwargs={}, show_spinner=True, include_default_metadata=True)

add_data_block(records)
Append the given set of records to the ZS file as a single data block.

(See On-disk layout of ZS files for details on what a data block is.)

Parameters records – A list of byte strings giving the contents of each record.

add_file_contents(file_handle, approx_block_size, terminator=b’\n’, length_prefixed=None)
Split the contents of file_handle into records, and write them to the ZS file.

The arguments determine how the contents of the file are divided into records and blocks.

Parameters

• file_handle – A file-like object whose contents are read. This file is always closed.

• approx_block_size – The approximate size of each data block, in bytes, before com-
pression is applied.

• terminator – A byte string containing a terminator appended to the end of each record.
Default is a newline.

• length_prefixed – If given, records are output in a length-prefixed format, and
terminator is ignored. Valid values are the strings "uleb128" or "u64le", or
None.

finish()
Declare this file finished.

This method writes out the root block, updates the header, etc.

Importantly, we do not write out the correct magic number until this method completes, so no ZS reader
will be willing to read your file until this is called (see Magic number).

Do not call this method unless you are sure you have added the right records. (In particular, you definitely
don’t want to call this from a finally block, or automatically from a with block context manager.)

Calls close().

close()
Close the file and terminate all background processing.

Further operations on this ZSWriter object will raise an error.

If you call this method before calling finish(), then you will not have a working ZS file.

This object can be used as a context manager in a with block, in which case close() will be called
automatically, but finish() will not be.

closed
Boolean attribute indicating whether this ZSWriter is closed.

18 Chapter 3. The zs library for Python

CHAPTER 4

Conventions

Our experience is that most data sets have various unique features, so ZS is an unopinionated format: we give you a
hunk of JSON and a pile of binary records, and let you figure out what to put in them. But, it is nice to have some
conventions for how to handle common situations. As more people use the format, these will probably evolve, but for
now here are some notes.

Metadata

[XX document the metadata being used in the current gbooks files]:

"build-info": {
"host": "morel.ucsd.edu",
"user": "njsmith",
"time": "2014-04-21T23:56:47.225267Z",
"version": "zs 0.0.0-dev"

},
"corpus": "google-books-eng-us-all-20120701",
"subset": "2gram",
"record-format": {

"separator": "\t",
"column-types": [

"utf8",
"int",
"int",
"int"

],
"type": "separated-values",
"column-names": [

"ngram",
"year",
"match_count",
"volume_count"

]
}

19

ZS Documentation, Release 0.10.0

Some other items you might want to consider including:

• Information on the preprocessing pipeline that led to this file (for answering questions like, “is this the version
that had case-sensitivity enabled, or disabled?”)

• Bibliographic references for papers that users of this data might want to refer to or cite.

• Your contact information.

• Any relevant DOIs or ORCIDs.

Record format

The ZS format itself puts absolutely no limitations on the contents of individual records. You can encode your data
any way you feel like. However, because indexing is done by ASCIIbetical sort order, it’s probably a good idea to
choose an encoding which makes sort order meaningful. Some general principles:

• Put the field you want to index on first; if you want to be able to index on multiple fields simultaneously, put
them first, second, third, etc.

• Beware of quoting. This arises especially for common CSV formats, where fields containing the characters ,
or " often get special handling. For example, suppose we have some nicely organized n-grams:

to be , or not to be
to be disjoint and out of frame
'Tis Hamlet 's character . " Naked ! "
'Tis now the very witching time
What a piece of work is a man !

If we encode these as a column in CSV format, and then sort, we end up with:

"'Tis Hamlet 's character . "" Naked ! """
"to be , or not to be"
'Tis now the very witching time
What a piece of work is a man !
to be disjoint and out of frame

Notice that every entry that contained a , or " has been wrapped in "‘s. If we want to find n-grams beginning
to be or 'Tis then a simple prefix search will no longer work; when we want to find records with the prefix
foo we have to remember always to search for both foo and "foo.

Ideally there is some character that you know will never occur in any field, and you can use that for your
separator – then no quoting is ever needed. This might be tab (t), or if you get desperate then there are other
options like NUL (00) or newline (n) – though with these latter options you’ll lose some of the convenience
of browsing your data with simple tools like zs dump, and may have to play around a bit more with zs make‘s
options to construct your file in the first place.

Alternatively, other quoting schemes (e.g., replacing , with \\, and \\ with \\\\) may not perfectly preserve
sorting, but they do preserve prefix searches, which is often the important thing.

• Beware of standard number formats. String-wise, "10" is less than "2", which is a problem if you want to
be able to do range queries on numeric data in ZS files. Some options for working around this include using
fixed-width strings ("10" and "02"), or using some kind of big-endian binary encoding. Note that the ASCII
space character (0x20) sorts before all printing characters, including digits. This means that instead of padding
with zeroes like in "02", it will also work to pad with spaces, " 2". Fixed width formats in general can be
cumbersome to work with, but they do have excellent sorting properties.

20 Chapter 4. Conventions

http://orcid.org/

ZS Documentation, Release 0.10.0

In the Google n-grams, the year field fortunately turns out to be fixed width (at least until Google starts scanning
papyruses). And for the actual count fields, this formatting issue doesn’t arise, because we have no reason to
index on them.

• Beware of little-endian Unicode and surrogate pairs. ASCII, UTF-8, and UTF-32BE all have sensible sort
orders (i.e., ASCIIbetical sort on the encoded strings is the same as lexicographic sort on code points). This is
definitely not true for UTF-16LE or UTF-32LE, and is not quite true for UTF-16BE, because of the existence
of surrogate pairs (see e.g.).

Of course, if all you want are exact prefix searches, then these issues don’t really matter.

We recommend using UTF-8 unless you have a good reason not to.

Note that the zs command-line tool has a mild bias towards UTF-8, in that if you pass it raw Unicode characters
for --start, --stop, or --prefix, then it encodes them as UTF-8 before doing the search.

If these issues turn out to cause enough problems, it may makes sense at some point to define a revised version of
the ZS format which has an explicit schema for record contents, and uses a content-sensitive sort order (e.g., one that
performs numeric comparison on numeric fields).

4.2. Record format 21

https://ssl.icu-project.org/docs/papers/utf16_code_point_order.html

ZS Documentation, Release 0.10.0

22 Chapter 4. Conventions

CHAPTER 5

Publically available ZS datasets

[XX expand]

The v2 Google Books eng-us-all n-grams are here, at least temporarily: http://bolete.ucsd.edu/njsmith/

Note that these files use “0gram” to refer to what Google calls “totalcounts”, thus preserving the rule that n-gram counts
are normalized by (n-1)-gram counts. The simple dependency arcs that Google calls “0grams” are not included, since
they seem to have been superseded by later data releases.

The zscontrib repository has some scripts to fetch an arbitrary v2 Google Books sub-corpus and build it into a set of
.zs files.

23

http://bolete.ucsd.edu/njsmith/
https://github.com/njsmith/zscontrib

ZS Documentation, Release 0.10.0

24 Chapter 5. Publically available ZS datasets

CHAPTER 6

On-disk layout of ZS files

This page provides a complete specification of version 0.10 of the ZS file format, along with rationale for specific
design choices. It should be read by anyone who plans to implement a new reader or writer for the format, or is just
interested in how things work under the covers.

Overview

ZS is a read-only database format designed to store a multiset of records, where each record is an uninterpreted string
of binary data. The main design goals are:

• Locating an arbitrary record, or sorted span of records, should be fast.

• Doing a streaming read of a large span of records should be fast.

• Hardware is unreliable, especially on the scale of terabytes and years, and ZS is designed for long-term archival
of multi-terabyte data. Therefore it must be possible to quickly and reliably validate the integrity of the data
returned by every operation.

• It should be reasonably efficient to access files over slow, “dumb” transports like HTTP.

• Files should be as small as possible while achieving the above goals.

The main complication influencing ZS’s design is that compression is necessary to achieve reasonable storage sizes,
but decompression is slow, block-oriented, and inherently serial, which puts the last goal in direct conflict with the
first two. Compressing a chunk of data is like wrapping it up into an opaque bundle. The only way to find something
inside is to first unwrap (decompress) the whole thing. This is why it won’t work to simply write our data into a large
text file and then use a standard compression program like gzip on the whole thing. If we did this, then the only way
to find any piece of data would be to decompress the whole file, which takes ages. Instead, we need some way to split
our data up into multiple smaller bundles. Once we’ve done this, reading individual records can be fast, because we
only have to unwrap a single small bundle, not a huge one. And, it turns out, splitting up our data into multiple bundles
also makes bulk reads faster. For a large read, we have to unpack the same amount of total data regardless of whether
it’s divided into small bundles or not, so the total work is constant. But, in the multiple-bundle case, we can easily
divvy up this work across multiple CPUs, and thus finish the job more quickly. So, small bundles are great – but, they
also have a downside: if we make our bundles too small, then the compression algorithm won’t be able to find many

25

https://en.wikipedia.org/wiki/Multiset

ZS Documentation, Release 0.10.0

redundancies to compress out, and so our compression ratio will not be very good. In particular, trying to compress
individual records would be hopeless.

Our solution is to bundle records together into moderately-sized blocks, and then compress each block. Then we add
some framing to let us figure out where each block starts and ends, and add an index structure to let us quickly find
which blocks contain records that match some query, and ta-da, we have a ZS file. The resulting structure looks like
this:

Fast lookup for arbitrary records is supported by a tree-based indexing scheme: the header contains a pointer to the
“root” index block, which in turn refers to other index blocks, which refer to other index blocks, until eventually the
lowest-level index blocks refer to data blocks. By following these links, we can locate any arbitrary record in 𝑂(log 𝑛)
time.

In addition, we require data blocks to be arranged in sorted order within the file. This allows us to do streaming reads
starting from any point, which makes for nicely efficient disk access patterns. And range queries are supported by
combining these two access strategies: first we traverse the index to figure out which blocks contain records that fall
into our range, and then we do a streaming read across these blocks.

General notes

Language

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

Checksumming

To achieve our data integrity goals, every byte in a ZS file that could possibly contain undetected corruption is protected
by a 64-bit CRC. Specifically, we use the same CRC-64 calculation that the .xz file format does. The Rocksoft model
parameters for this CRC are: polynomial = 0x42f0e1eba9ea3693, reflect in = True, init = 0xffffffffffffffff, reflect out =
True, xor out = 0xffffffffffffffff, check = 0x995dc9bbdf1939fa.

Integer representations

Within the ZS header, we make life easier for simple tools like file by encoding all integers using fixed-length 64-bit
little-endian format (u64le for short).

Outside of the header, integers are encoded in the uleb128 format, familiar from the DWARF debugging format. Okay,
maybe not so familiar. This is a simple variable-length encoding for unsigned integers of arbitrary size using unsigned
little-endian base-128. To read a uleb128 value, you proceed from the beginning of the string, one byte at a time. The
lower 7 bits of each byte give you the next 7 bits of your integer. This is little-endian, so the first byte gives you the
least-significant 7 bits of your integer, then the next byte gives you bits 8 through 15, the one after that the bits 16
through 23, etc. The 8th, most-significant bit of each byte serves as a continuation byte. If this is 1, then you keep
going and read the next byte. If it is 0, then you are done. Examples:

uleb128 string <-> integer value
-------------- -------------

00 0x00
7f 0x7f

80 01 0x80

26 Chapter 6. On-disk layout of ZS files

https://www.ietf.org/rfc/rfc2119.txt
http://tukaani.org/xz/xz-file-format.txt
http://www.ross.net/crc/crcpaper.html
https://en.wikipedia.org/wiki/File_%28command%29
https://en.wikipedia.org/wiki/DWARF

ZS Documentation, Release 0.10.0

ff 20 0x107f
80 80 80 80 20 2 ** 33

(This format is also used by protocol buffers, by the XZ file format, and others.) This format allows for redundant
representations by adding leading zeros, e.g. the value 0 could also be written 80 00. However, doing so is forbidden;
all values MUST be encoded in their shortest form.

Layout details

Here’s the big picture – refer to it while reading the full details below.

ZS files consist of a magic number, followed by a header, followed by a sequence of blocks. Blocks come in two
types: data blocks, and index blocks.

Magic number

To make it easy to distinguish ZS files from non-ZS files, every valid ZS file begins with 8 magic bytes. Specifically,
these ones (written in hex, with ASCII below):

ab 5a 53 66 69 4c 65 01 # Good magic
Z S f i L e

If there’s ever an incompatible ZS version 2, we’ll use the last byte as a version number.

Writing out a large ZS file is an involved operation that might take a long time. It’s possible for a hardware or software
problem to occur and cause this process to be aborted before the file is completely written, leaving behind a partial,
corrupt ZS file. Because ZS is designed as a reliable archival format we would like to avoid the possibility of confusing
a corrupt file with a correct one, and because writing ZS files can be slow, after a crash we would like to be able to
reliably determine whether the writing operation completed, and whether we can trust the file left behind. Therefore
we also define a second magic number to be used specifically for partial ZS files:

ab 5a 53 74 6f 42 65 01 # Bad magic
Z S t o B e

It is RECOMMENDED that ZS file writers perform the following sequence:

• Write out the ZStoBe magic number.

• Write out the rest of the ZS file.

• Update the header to its final form (including, e.g., the offset of the root block).

• (IMPORTANT) Sync the file to disk using fsync() or equivalent.

• Replace the ZStoBe magic number with the correct ZSfiLe magic number.

Following this procedure guarantees that, modulo disk corruption, any file which begins with the correct ZS magic
will in fact be a complete, valid ZS file.

Any file which does not begin with the correct ZS magic is not a valid ZS file, and MUST be rejected by ZS file
readers. Files with the ZStoBe magic are not valid ZS files. However, polite ZS readers SHOULD generally check
for the ZStoBe magic, and if encountered, provide an informative error message while rejecting the file.

6.3. Layout details 27

https://en.wikipedia.org/wiki/Protocol_Buffers
http://tukaani.org/xz/xz-file-format-1.0.4.txt
https://en.wikipedia.org/wiki/File_format#Magic_number

ZS Documentation, Release 0.10.0

Header

The header contains the following fields, in order:

• Length (u64le): The length of the data in the header. This does not include either the length field itself, or the
trailing CRC – see diagram.

• Root index offset (u64le): The position in the file where the root index block begins.

• Root index length (u64le): The number of bytes in the root index block. This includes the root index block’s
length and CRC fields; the idea is that doing a single read of this length, at the given offset, will give us the
root index itself. This is an important optimization when IO has high-latency, as when accessing a ZS file over
HTTP.

• Total file length (u64le): The total number of bytes contained in this ZS file; the same thing you’d get from
ls -l or similar.

Warning: To guarantee data integrity, readers MUST validate the file length field; our CRC
checks alone cannot detect file truncation if it happens to coincide with a block boundary.

• SHA-256 of data (32 bytes): The SHA-256 hash of the stream one would get by extracting all data block
payloads and concatenating them. The idea is that this value uniquely identifies the logical contents of a ZS file,
regardless of storage details like compression mode, block size, index fanout, etc.

• Codec (16 bytes): A null-padded ASCII string specifying the codec (compression method) used. Currently
defined codecs include:

– none: Block payloads are stored in raw, uncompressed form.

– deflate: Block payloads are stored using the deflate format as defined in RFC 1951. Note that this
is different from both the gzip format (RFC 1952) and the zlib format (RFC 1950), which use different
framing and checksums. ZS provides its own framing and checksum, so we just use raw deflate streams.

– lzma2;dsize=2^20: Block payloads are represented as raw LZMA2 bitstreams that can be decom-
pressed using a dictionary size of 220 bytes (i.e., 1 MiB); this means that each decoder needs an upper
bound of ~2 MiB of memory. Note that while it might look parametrized, this is a simple literal string
– for example, using the encoder string lzma2;dsize=2^21 is illegal. This means you can use the
standard XZ presets 0 and 1, including the “extreme” 0e and 1e modes, but not higher. This is pretty
reasonable, since there is never any advantage to using a dictionary size that is larger than a single block
payload, and we expect >1 MiB blocks to be rare; but, if there is demand, we may add further modes with
larger dictionary sizes.

As compared to using XZ format, raw LZMA2 streams are ~0.5% smaller, so that’s nice. And, more
importantly, the use of raw streams dramatically reduces the complexity requirements on readers, which
is important for an archival format. Doing things this way means that readers don’t need to be prepared to
handle the multi-gigabyte dictionary sizes, complicated filter chains, multiple checksums, etc., which the
XZ format allows.

• Metadata length (u64le): The length of the next field:

• Metadata (UTF-8 encoded JSON): This field allows arbitrary metadata to be attached to a ZS file. The only
restriction is that the encoded value MUST be what JSON calls an “object” (also known as a dict, hash table,
etc. – basically, the outermost characters have to be {}). But this object can contain arbitrarily complex values
(though we recommend restricting yourself to strings for the keys). See Metadata.

• <extensions> (??): Compliant readers MUST ignore any data occurring between the end of the metadata field
and the end of the header (as defined by the header length field). This space may be used in the future to

28 Chapter 6. On-disk layout of ZS files

https://tools.ietf.org/html/rfc1951

ZS Documentation, Release 0.10.0

add backwards-compatible extensions to the ZS format. (Backwards-incompatible extensions, of course, will
include a change to the magic number.)

• CRC-64-xz (u64le): A checksum of all the header data. This does not include the length field, but does include
everything between it and the CRC. See diagram.

Blocks

Blocks themselves all have the same format:

• Length (uleb128): The length of the data in the block. This does not include either the length field itself, or
the trailing CRC – see diagram.

• Level (u8): A single byte encoding the “level” of this block. Data blocks are level 0. Index blocks can have
any level between 1 and 63 (inclusive). Other levels are reserved for future backwards-compatible extensions;
compliant readers MUST silently ignore any block with its level field set to 64 or higher.

• Compressed payload (arbitrary data): The rest of the block after the level is a compressed representation of
the payload. This should be decompressed according to the value of the codec field in the header, and then
interpreted according to the rules below.

• CRC-64-xz (u64le): CRC of the data in the block. This does not include the length field – see diagram. Note
that this is calculated directly on the raw disk representation of the block, compression and all.

Technically we don’t need to store the length at the beginning of each block, because every block also has its length
stored either in an index block or (for the root block) in the header. But, storing the length directly at the beginning of
each block makes it much simpler to write naive streaming decoders, reduces seeks during streaming reads, and adds
negligible space overhead.

Data block payload

Data block payloads encode a list of records. Each record has the form:

• Record length (uleb128): The number of bytes in this record.

• Record contents (arbitrary data): That many bytes of data, making up the contents of this record.

Then this is repeated as many times as you want.

Every data block payload MUST contain at least one record.

Index block payload

Index block payloads encode a list of references to other index or data blocks.

Each index payload entry has the form:

• Key length (uleb128): The number of bytes in the “key”.

• Key value (arbitrary data): That many bytes of data, making up the “key” for the pointed-to block. (See below
for the invariants this key must satisfy.)

• Block offset (uleb128): The file offset at which the pointed-to block is located.

• Block length (uleb128): The length of the pointed-to block. This includes the root index block’s length and
CRC fields; the idea is that doing a single read of this length, a the given offset, will give us the root index itself.
This is an important optimization when IO has high-latency, as when accessing a ZS file over HTTP.

6.3. Layout details 29

ZS Documentation, Release 0.10.0

Then this is repeated as many times as you want.

Every index block payload MUST contain at least one entry.

Key invariants

All comparisons here use ASCIIbetical order, i.e., lexicographic comparisons on raw byte values, as returned by
memcmp().

We require:

• The records in each data block payload MUST be listed in sorted order.

• If data block A occurs earlier in the file (at a lower offset) than data block B, then all records in A are REQUIRED
to be less-than-or-equal-to all records in B.

• Every block, except for the root block, MUST be referenced by exactly one index block.

• An index block of level 𝑛 MUST only reference blocks of level 𝑛− 1. (Data blocks are considered to have level
0.)

• The keys in each index block payload MUST occur in sorted order.

• To every block, we assign a span of records as follows: data blocks span the records they contain. Index blocks
span all the records that are spanned by the blocks that they point to (recursively). Given this definition, we can
state the key invariant for index blocks: every index key MUST be less-than-or-equal-to the first record which
is spanned by the pointed-to block, and MUST be greater-than-or-equal-to all records which come before this
record.

Note: According to this definition, it is always legal to simply take the first record spanned by a block, and use
that for its key. But we do not guarantee this; advanced implementations might take advantage of this flexibility
to choose shorter keys that are just long enough to satisfy the invariant above. (In particular, there’s nothing in
ZS stopping you from having large individual records, up into the megabyte range and beyond, and in this case
you might well prefer not to copy the whole record into the index block.)

Notice that all invariants use non-strict inequalities; this is because the same record might occur multiple times in
different blocks, making strict inequalities impossible to guarantee.

Notice also that there is no requirement about where index blocks occur in the file, though in general each index will
occur after the blocks it points to, because unless you are very clever you can’t write an index block until after you
have written the pointed-to blocks and recorded their disk offsets.

Specification history

• Version 0.10: Remove support for the bz2 compression format.

• Version 0.9: First public release.

30 Chapter 6. On-disk layout of ZS files

CHAPTER 7

Release history

v0.10.0

Switched the default codec to LZMA, and dropped bzip2 support, since LZMA seems as good or better on pretty much
all axes.

Upped the default --approx-block-size to 384 KiB.

Improved zs make‘s spinner output.

v0.9.0

First public release.

31

ZS Documentation, Release 0.10.0

32 Chapter 7. Release history

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

33

ZS Documentation, Release 0.10.0

34 Chapter 8. Indices and tables

Python Module Index

z
zs, 13

35

ZS Documentation, Release 0.10.0

36 Python Module Index

Index

Symbols
__iter__() (zs.ZS method), 15

A
add_data_block() (zs.ZSWriter method), 18
add_file_contents() (zs.ZSWriter method), 18

B
block_exec() (zs.ZS method), 17
block_map() (zs.ZS method), 16

C
close() (zs.ZSWriter method), 18
closed (zs.ZSWriter attribute), 18
codec (zs.ZS attribute), 16

D
data_sha256 (zs.ZS attribute), 16
dump() (zs.ZS method), 17

F
finish() (zs.ZSWriter method), 18

M
metadata (zs.ZS attribute), 15

R
root_index_length (zs.ZS attribute), 15
root_index_level (zs.ZS attribute), 16
root_index_offset (zs.ZS attribute), 15

S
search() (zs.ZS method), 15

T
total_file_length (zs.ZS attribute), 16

V
validate() (zs.ZS method), 17

Z
ZS (class in zs), 14–17
zs (module), 13
ZSCorrupt, 14
ZSError, 14
ZSWriter (class in zs), 17

37

	Project logistics
	The command-line zs tool
	zs make
	zs info
	zs dump
	zs validate

	The zs library for Python
	Quickstart
	Error reporting
	Reading
	Writing

	Conventions
	Metadata
	Record format

	Publically available ZS datasets
	On-disk layout of ZS files
	Overview
	General notes
	Layout details
	Key invariants
	Specification history

	Release history
	v0.10.0
	v0.9.0

	Indices and tables
	Python Module Index

